



## **ISO 12500**

ISO 12500 defines a universal method for manufacturers to test and rate compressed air filters. Critical performance parameters are specified for inlet oil challenge and solid particulate size distribution.

- ISO 12500-1 defines the testing of coalescing filters for oil aerosol removal performance.
- ISO 12500-2 quantifies vapor removal capacity of adsorption filters.
- ISO 12500-3 outlines requirements to test particulate filters for solid contaminant removal.

The NGF Series is tested to ISO 12500. Test results provide certifiable performance data based on defined challenge concentrations.



## NGF Series Filtration Performance

| Element Grade                                               | SF                    | PF                    | HF                       | UF                        | CF                                        |
|-------------------------------------------------------------|-----------------------|-----------------------|--------------------------|---------------------------|-------------------------------------------|
| Particle Retention Size <sup>1</sup> (Per ISO 12500-3)      | 3.0 µm                | 1.0 µm                | 0.01 μm                  | 0.01 μm                   | 0.01 μm                                   |
| Particle Removal Efficiency<br>(Per ISO 12500-3)            | -                     | 99.999+%              | 99.999+%                 | 99.9999+%                 | 99.999+%                                  |
| Oil Removal Efficiency<br>(Per ISO 12500-1)                 | 50%                   | 80%                   | 99.9+%                   | 99.99+%                   | _                                         |
| MaximumRemaining Oil Content <sup>2</sup> (Per ISO 12500-1) | 5.0 mg/m <sup>3</sup> | 2.0 mg/m <sup>3</sup> | < 0.01 mg/m <sup>3</sup> | < 0.001 mg/m <sup>3</sup> | < 0.004 mg/m <sup>3</sup><br>(as a vapor) |

<sup>1</sup> Solid particulate size distribution 0.01 to 5.0  $\mu m$ 

## NGF Series Pressure Drop Performance\*

| Element Grade | Filter Description                          | Dry  | ⁄ ∆ <b>p</b> | Wetted ∆p |      |  |
|---------------|---------------------------------------------|------|--------------|-----------|------|--|
|               | Filter Description                          | psig | barg         | psig      | barg |  |
| SF            | Bulk Liquid Separator/Filter                | 0.8  | 0.06         | 1.0       | 0.07 |  |
| PF            | General Purpose Filter                      | 0.6  | 0.04         | 1.4       | 0.10 |  |
| HF            | High Efficiency Oil Removal Filter          | 0.6  | 0.04         | 1.8       | 0.12 |  |
| UF            | Ultra High Efficiency<br>Oil Removal Filter | 0.8  | 0.06         | 2.0       | 0.14 |  |
| CF            | Oil Vapor Removal Filter                    | 1.0  | 0.07         | -         | -    |  |

<sup>\*</sup>Pressure drop not to exceed stated values at ISO 12500 test conditions

# ISO Quality Class 8573-1: 2010

| Element Grade | ISO Quality Class Solids | ISO Quality Class Oil |
|---------------|--------------------------|-----------------------|
| SF            | 3                        | 5                     |
| PF            | 2                        | 4                     |
| HF            | 1                        | 1                     |
| UF            | 1                        | 1                     |
| CF            | 1                        | 1<br>(as a vapor)     |

<sup>2</sup> Inlet oil challenge concentration 10mg/m<sup>3</sup>





## Housing-Connection-Flow

| Model* | Connection | Flow @<br>100 psig | Flow @<br>6.7 barg |
|--------|------------|--------------------|--------------------|
|        | in         | scfm               | nm <sup>3</sup> /h |
| 02     | 1/4"       | 20                 | 34                 |
| 03     | 3/8"       | 35                 | 59                 |
| 04     | 1/2"       | 50                 | 85                 |
| 06     | 3/4"       | 75                 | 127                |
| 07     | 3/4"       | 103                | 175                |
| 08     | 1.0"       | 157                | 267                |
| 10     | 1 1/2"     | 257                | 437                |
| 11     | 1 1/2"     | 360                | 612                |
| 12     | 2"         | 401                | 681                |
| 13     | 2 1/2"     | 568                | 965                |
| 14     | 2 1/2"     | 775                | 1317               |
| 15     | 2 1/2"     | 1030               | 1750               |
| 16     | 3"         | 1200               | 2039               |
| 17     | 3"         | 1500               | 2549               |

<sup>\*</sup>BSP threads are available. Add B to the model number. Example F02B-SF-DP

#### **Element Grade**

| SF | Bulk Liquid Removal         |  |  |  |  |
|----|-----------------------------|--|--|--|--|
| PF | Particulate Removal         |  |  |  |  |
| HF | Oil Removal                 |  |  |  |  |
| UF | High Efficiency Oil Removal |  |  |  |  |
| CF | Oil Vapor Removal           |  |  |  |  |

### **Options**

| т          | Drain Plug                            |
|------------|---------------------------------------|
| D          | Internal Automatic Drain              |
| P1         | Differential Pressure Slide Indicator |
| G1         | Differential Pressure Gauge           |
| Х          | External Drain Adaptor (02-12)        |
| <b>Z</b> 1 | Electric Demand Drain (02-12)         |
| <b>Z</b> 2 | Electric Demand Drain (13-17)         |
| W          | External Mechanical Drain (13-17)     |

Example: F02-SF-DP1

Flow and Connection: 20 scfm (34 nm<sup>3</sup>/h); 1/4" NPT

Element Grade: SF- bulk liquid removal

Options: Internal automatic drain; differential pressure slide indicator

## **CAPACITY CORRECTION FACTORS**

NGF Series flow capacities are rated per ISO 12500 conditions @ 100 psig (6.7 barg). To size the filter for non-standard conditions, a correction factor must be applied. Table 1 provides correction factors for inlet air pressure.

Do not select filters by pipe size; use flow rate and operating pressure.

Table 1 - Correction Factors for Inlet Pressure

| Inlet Pressure    | psig | 20   | 30   | 40   | 60   | 80   | 100  | 120  | 150  | 200  | 250  | 300  |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| illet Pressure    | barg | 1.4  | 2.1  | 2.8  | 4.1  | 5.5  | 6.9  | 8.3  | 10.3 | 13.8 | 17.2 | 20.7 |
| Correction Factor |      | 0.30 | 0.39 | 0.48 | 0.65 | 0.83 | 1.00 | 1.17 | 1.44 | 1.87 | 2.31 | 2.74 |

## **Adjusted Flow Capacity**

To calculate the flow capacity based on non-standard inlet conditions, multiply the filter's rated flow capacity by the corresponding inlet pressure correction factor.

High Efficiency Coalescing Filter: F04-HF-DP Rated capacity: 50 scfm (85 nm<sup>3</sup>/h)

Operating Conditions: 120 psig (8.3 barg)

Adjusted Flow Capacity: 50 scfm x 1.17 = 59 scfm (100 nm<sup>3</sup>/h)

## **Technical Specifications**

| <b>Drain Option</b>           | <b>Maximum Operating Pressure</b> | Maximum Operating Temperature | Minimum Operating Temperature |
|-------------------------------|-----------------------------------|-------------------------------|-------------------------------|
| Drain Plug                    | 250 (17.2 barg)                   | 150°F (66°C)                  | 35°F (2°C)                    |
| Internal Float                | 250 (17.2 barg)                   | 150°F (66°C)                  | 35°F (2°C)                    |
| Electric Demand               | 232 (15.9 barg)                   | 140°F (60°C)                  | 35°F (2°C)                    |
| Externally Mounted Mechanical | 150 (10.3 barg)                   | 120°F (49°C)                  | 35°F (2°C)                    |

 $\textit{CF Grade: Recommended maximum inlet air temperature not to exceed 100°F to maintain 1,000 hours of \textit{life} and \textit{life} are temperature and to exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and the exceed 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of life are temperature and 100°F to maintain 1,000 hours of$